create()
Initialize the evaluator instance and prepare for evaluation.
Syntax
def create() -> NoneParameters
None
Return Value
None
Description
The create() method is used to initialize the evaluator instance. This method must be called after __init__() and before eval().
This method performs the following operations based on the evaluation method specified during initialization:
- Load the corresponding evaluation module
- Configure evaluation parameters
- Initialize the evaluator
- Prepare the evaluation environment
Different evaluation methods perform different initialization operations:
- Anonymeter: Initialize privacy risk evaluator
- SDMetrics: Initialize data quality evaluator
- MLUtility: Initialize machine learning utility evaluator
- Stats: Initialize statistical evaluator
- Custom: Load and initialize custom evaluator
Basic Examples
from petsard import Evaluator
# Initialize privacy risk evaluator
evaluator = Evaluator('anonymeter-singlingout')
evaluator.create() # Initialize evaluator
# Initialize data quality evaluator
evaluator = Evaluator('sdmetrics-qualityreport')
evaluator.create() # Initialize evaluator
# Initialize machine learning utility evaluator
evaluator = Evaluator(
'mlutility',
task_type='classification',
target='income'
)
evaluator.create() # Initialize evaluatorNotes
- Required Step: This method must be called before
eval() - Single Call: Each evaluator instance only needs to call
create()once - Parameter Setting: All evaluation parameters must be set during
__init__(),create()does not accept parameters - Error Handling: If the evaluation method does not exist or parameters are incorrect, an exception will be raised at this stage
- Resource Initialization: Some evaluators may load models or allocate resources at this stage
- Best Practice: Use YAML configuration files rather than direct Python API